

JAMMU AND KASHMIR PUBLIC SERVICE COMMISSION

RESHAM GHAR COLONY, BAKSHI NAGAR, JAMMU - 180001

Website: http://jkpsc.nic.in email: coejkpsc2017@gmail.com

Jammu: 0191-2566533

Subject:

Conduct of Written Examination for the post of Geologist Grade-III and Driller in Department of Mining- Provisional Answer Key(s) thereof.

Notification No. PSC/Exam/S/2024/51 Dated: 29.08.2024

In pursuance of Rule 10(c) of the Jammu & Kashmir Public Service Commission (Conduct of Examination) Rules, 2022, as amended upto date, the Provisional Answer Key(s) of Question Paper pertaining to the **Written Test for the post of Geologist Grade-III and Driller** held on **29.08.2024**, are hereby notified for seeking objections from candidates:

PROVISIONAL ANSWER KEY (GEOLOGIST GRADE-III)

Test Booklet Question No (Series A)	
Q1	С
Q2	A
Q3	A
Q4	В
Q5	В
Q6	A
Q7	A
Q8	В
Q9	С
Q10	A
Q11	A
Q12	С
Q13	A

Test Booklet Question No. (Series A)	
Q14	A
Q15	A
Q16	С
Q17	D
Q18	С
Q19	A
Q20	В
Q21	В
Q22	D
Q23	В
Q24	D
Q25	С
Q26	В

Test Booklet Question No. (Series A)	
Q27	A
Q28	С
Q29	В
Q30	A
Q31	В
Q32	A
Q33	В
Q34	С
Q35	A
Q36	С
Q37	A
Q38	С
Q39	A

Test Booklet Question No.
(Series A)

Test Booklet Question No. (Series A)	
Q40	В
Q41	D
Q42	C
Q43	A
Q44	С
Q45	A
Q46	В
Q47	В
Q48	В
Q49	В
Q50	A
Q51	В
Q52	С
Q53	A
Q54	В
Q55	С
Q56	С
Q57	B
Q58	C
Q59	A
Q60	В

Test Booklet Question No.	
(Series A)	

Test Booklet Question No. (Series A)	
Q61	С
Q62	D
Q63	. В
Q64	A
Q65	С
Q66	В
Q67	С
Q68	D
Q69	В
Q70	A
Q71	С
Q72	A
Q73	D
Q74	С
Q75	A
Q76	С
Q77	D
Q78	A
Q79	A
Q80	D
Q81	В

Test Booklet Question No.
(Series A)

Test Booklet Question No. (Series A)		
Q8	32	С
Q8	33	A
Q8	84	С
Q8	85	D
Q8	86	D
Q8	37	С
Q8	8	С
Q8	9	D
Q9	0	A
Q9	1	С
Q9	2	С
Q9	3	A
Q9	4	A
Q9	5	D
Q9	6	A
Q9	7	A
Q9	8	A
Q9	9	В
Q10	00	D
	-	

PROVISIONAL ANSWER KEY (DRILLER)

Test Booklet Question No. (Series A)	
Q1	С
Q2	В
Q3	В
Q4	С
Q5	A
Q6	D
Q7	D
Q8	D
Q9	В
Q10	В
Q11	С
Q12	A
Q13	D
Q14	В
Q15	A
Q16	D
Q17	С
Q18	В.
Q19	В
Q20	В
Q21	С
Q22	В
Q23	A
Q24	В
Q25	В
Q26	D
Q27	В
Q28	D
Q29	В
Q30	С
Q31	D
Q32	С
Q33	D
Q34	В

Test Booklet Question No. (Series A)	
Q35	D
Q36	D
Q37	A
Q38	С
Q39	D
Q40	В
Q41	С
Q42	D
Q43	В
Q44	D
Q45	D
Q46	D
Q47	С
Q48	В
Q49	С
Q50	С
Q51	A
Q52	С
Q53	В
Q54	С
Q55	A
Q56	A
Q57	В
Q58	A
Q59	С
Q60	D
Q61	Α
Q62	С
Q63	В
Q64	D
Q65	В
Q66	A
Q67	С
Q68	A

	t Question No. ies A)
Q69	С
Q70	A
Q71	С
Q72	В
Q73	A
Q74	A
Q75	A
Q76	D
Q77	В
Q78	C
Q79	В
Q80	D
Q81	D
Q82	A
Q83	В
Q84	С
Q85	С
Q86	В
Q87	С
Q88	В
Q89	В
Q90	A
Q91	С
Q92	A
Q93	В
Q94	D
Q95	D
Q96	A
Q97	A
Q98	С
Q99	A
Q100	В

The candidates are advised to refer to **Question Booklet (Series A)** to match the corresponding question(s) in their respective Question Booklet Series and if any candidate feels that the key to any of the question(s) is/are wrong, he/she may represent on prescribed format/proforma annexed as **Annexure-A** along with the documentary proof/evidence (hard copies only) and fee of Rs.500/- per question in the form of Demand Draft drawn in favour of **COE**, **J&K PSC** (refundable in case of genuine/correct representation) to the Controller of Examinations, Jammu & Kashmir Public Service Commission, from 30.08.2024 to 03.09.2024. The candidates are further advised to clearly mention the question(s) objected to with reference to its serial number as it appears in the Question Booklet of Series A of the Provisional Answer Key.

Further, any objection/application not accompanied by the requisite Demand Draft of Rs.500/- as prescribed, shall not be considered/entertained under any circumstances. Candidates are, in their own interest, advised to adhere to these instructions and not submit any objection unaccompanied by the Demand Draft as required under extant rules.

The Commission shall not entertain any such representation(s) after the expiry of the stipulated period i.e. after 03.09.2024 (Tuesday), 05.00 pm.

The provisional answer key(s) are available on the website of the Commission http://www.jkpsc.nic.in.

(Sachin Jamwal) JKAS
Controller of Examinations
J&K Public Service Commission

Dated: 29.08.2024

No. PSC/Ex-Secy/2024/36 Copy to the: -

1. Director, Information and Public Relations, J&K for publication of the notice in all leading newspapers published from Jammu/Srinagar.

2. P.S. to Hon'ble Chairman, J&K Public Service Commission for information of the Hon'ble Chairman.

3. P.S. to Hon'ble Member, Shri ______ for information of the Hon'ble Member.

4. P. A. to Secretary, J&K Public Service Commission for information of the Secretary.

5. Main file/Stock file/Notice Board.

Annexure-A

Representation regarding objection(s) to any Question/Answer pertaining to the Written Test conducted for the post of Geologist Grade-III and Driller on 29.08.2024

(NOTE: USE SEPARATE FORMS FOR SEPARATE QUESTIONS)

Name of the Post :		
Name of the Applicant :		
Roll No.:		
Correspondence Address :		
Contact/Mobile No.:		
Date of Application:	.2024	
Demand Draft No. date :		
Candidates Account No.(16 digit) & IFSC Code	21	
Question Details of the Objection No. in	Resource Material (copy to be	Details of the Website
Series A	enclosed)	(if any)

Signature of the Candidate

Note: Application for each question/answer shall be made on separate page in the given format, otherwise the first question entered in the format shall only be considered.

Booklet Serial No. 220213

Test Booklet Series

TEST BOOKLET GEOLOGIST GRADE III

Written Test - 2024

(22)

Time Allowed: Two Hours Maximum Marks: 100

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET **DOES NOT** HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. Please note that it is the candidate's responsibility to encode and fill in the Roll Number and Test Booklet Series Code A, B, C or D carefully and without any omission or discrepancy at the appropriate places in the OMR Answer /Response Sheet. Any omission/discrepancy will render the Response Sheet liable for rejection.
- 3. You have to enter your Roll Number on the
 Test Booklet in the Box provided alongside.

 DO NOT* write anything else* on the Test Booklet.
- 4. This Test booklet contains 100 items (questions). Each item comprises of four responses (answers). You will select the response which you want to mark on the Answer Sheet/Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose *ONLY ONE* response for each item.
- 5. You have to mark all your responses *ONLY* on the separate Answer /Response Sheet provided. *See directions in the Response Sheet*.
- 6. All items carry equal marks.
- 7. Before you proceed to mark in the Answer /Response Sheet, the response to various items in the Test Booklet, you have to fill in some particulars in the Answer /Response Sheet as per instructions sent to you with your Admission Certificate.
- 8. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator *only the Answer /Response Sheet*. You are permitted to take away with you the Test Booklet and *Candidate's Copy of the Response Sheet*.
- 9. Sheets for rough work are appended in the Test Booklet at the end.
- 10. While writing Centre, Subject and Roll No. on the top of the Answer Sheet/Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 11. Penalty for wrong answers:

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY THE CANDIDATE IN THE WRITTEN TEST (OBJECTIVE TYPE QUESTIONS PAPERS).

- (i) There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, (0.25) of the marks assigned to that question will be deducted as penalty.
- (ii) If a candidate gives more than one answer, it will be treated as a **wrong answer** even if one of the given answers happens to be correct and there will be same penalty as above for that question.
- (iii) If a question is left blank, i.e., no answer is given by the candidate, there will be **no penalty** for that question.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO

(22) (A)/2024 [P.T.O

(22) (A)

1.			ng is made	e up of bright, glassy looking, jet like coal band with			
		choidal fracture?		,			
	A)	Fusain					
	B)	Clarain					
	C)	Vitrain					
	D)	Attritus					
2.	Con	sider the following	g statemer	nt:			
	Ass			ion is the process involves conversion of olivine to th addition of water.			
	Rea	and the second s	eration mag	ay be possible due to hot residual solutions that emanated attrusives.			
	Cho	Choose the correct option:					
	A)	Both Assertion explanation of A		Reason (R) are the true and Reason (R) is a correct (A).			
	B)	Both Assertion (explanation of A		Reason (R) are the true but Reason (R) is not a correct (A).			
	C)	Assertion (A) is	true and R	Reason (R) is false.			
	D)			Reason (R) is true.			
3.	The	standard internati	onal weigl	ght of gems are measured in			
	A)	Metric carat					
	B)	Pound					
	C)	Milli gram					
	D)	None of the above	ve				
4.	Mat	tch the following					
1000 Til		neral	Ha	ardness			
	i)	Barytes	1)	8			
	-)		- /				

Min	ieral	На	rdness
i)	Barytes	1)	8
ii)	Calcite	2)	3-3.5
iii)	Gypsum	3)	2
iv)	Topaz	4)	3.0

Choose the correct option

- A) i-1, ii-2, iii-3, iv-4
- B) i-2, ii-4, iii-3, iv-1
- C) i-4, ii-3, ,iii-2, iv-1
- D) i-3, ii-4, iii-2, iv-1

- 5. Consider the following statement:
 - **Assertion (A)**: Fire clay are high-alumina clays with some non-plastic refractory flint and moderately refractory clays, which withstand temperature rise of 2714°F to 2984°F
 - **Reason (R)**: Fire clays are considered to have originated from suspended matter by low-gradient streams into coal swamps.

Choose the correct option:

- A) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).
- B) Both Assertion (A) and Reason(R) are the true but Reason (R) is not a correct explanation of Assertion (A).
- C) Assertion (A) is true and Reason (R) is false.
- D) Assertion (A) is false and Reason (R) is true.
- **6.** Consider the following statement:

Statement A: The ultimate failure strength depends on its composition, fabric, structural feature.

Statement B: It does not depend on its orientation to the direction of loading.

Choose the correct option:

- A) A is correct B is wrong
- B) B is correct A is wrong
- C) Both A and B are correct
- D) Both A and B are wrong
- 7. Which of the following rock have comparatively higher level of stability?
 - A) Muscovite
 - B) Pyroxene
 - C) Na-Plagioclase
 - D) Olivine
- **8.** Which type of dam is preferred for narrow river gorges and is convex to the upstream side?
 - A) Gravity Dam
 - B) Arch Dam
 - C) Buttress Dam
 - D) Earth Dam

9.	The	ratio of openings (void) in the soil or a rock to the volume of the soil or rock is			
	A)	Permeability			
	B)	Transmissivity			
	C)	Porosity			
	D)	Storage capacity.			
10.	Con	sider the following statement:			
	Ass	ertion (A): Mechanical weathering is faster in arid regions with high temperature			
	Rea	son (R) : As the temperature increases the vibration of atoms and ions in the rock mineral structure are more, ultimately leading to the development of crack at the macro-level.			
	Cho	oose the correct option:			
	A)	Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).			
	B)	Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).			
	C)	Assertion (A) is true and Reason (R) is false.			
	D)	Assertion (A) is false and Reason (R) is true.			
11.		rock masses present or lacking in between the elevations of the successive observation at also cause variations in gravity values. Such values are reduced by applying.			
	A)	Bouguer correction			
	B)	Free air correction			
	C)	Latitude correction			
	D)	Terrain correction			
12.	The	equatorial radius of the Earth isKms			
	A)	6325			
	B)	6356			
	C)	6378			
	D)	6390			
(22)	(A)	(5) [P.T.O			

(22)	(A)	(6)			
	D)	Poulter method			
	C)	Profile shooting method			
	B)	Arc shooting method			
	A)	Fan shooting method			
	the s	urface of the ground is			
17.	The	method used to produce seismic waves by shooting explosives in the air a feet	above		
		•			
	D)	Intensity.			
	C)	Induced Current			
	B)	Magnetic strength			
		Alternative current			
16.		n electromagnetic method, the greater the conductivity and higher the frequence ager will be the	cy, the		
	D)	Low-high-low			
	C)	High-low-high			
	B)	Low-low-high			
	A)	High-low-low			
15.		condition for Q-type resistivity curve for three layers indicates.			
	-)				
	D)	39,000 gammas			
	C)	45,000 gammas			
	B)	54,000 gammas			
17.	A)	70,000 gammas			
14.	The	total intensity of the Earth's field at the magnetic poles is about			
	D)	<1000 m/sec			
	C)	1500 m/sec			
	B)	3000 m/sec			
	A)	4500 m/sec			
13.	The	The Velocity of the seismic wave in rock salt is			

18.	The type of seismic waves, where the motion of the particles is horizontal and transverse to the direction of propagation is known as.		
	A)	Longitudinal waves	
	B)	Shear waves	
	C)	Love waves	
	D)	Rayleigh waves	
19.	Amo	ong the following diamagnetic minerals, which has least magnetic susceptibility.	
	A)	Diamond	
	B)	Calcite	
	C)	Quartz	
	D)	Anhydrite	
20.		en a magnetic rock is heated to the curie point and then cooled, its magnetism reappears much lower temperature, known as.	
	A)	Critical Temperature	
	B)	Temperature Hysteresis	
	C)	Saturation	
	D)	Inverse polarisation	
21.	The	porosity percentage for the basalt rock is	
	A)	13%	
	B)	17%	
	C)	25%	
	D)	28%	
22.		geophysical logging for the groundwater investigation, the presence of clay or shale tent can be obtained by usingtechnique.	
	A)	Sonic logs	
	B)	Caliper logs	
	C)	Neutron logs	
	D)	Natural gamma logs	

23.	In general, the specific yield for thick unconsolidated formations tend to fall in the ran of .		
	O1 .	2-5 %	
	B)	7-15 %	
	C)	10-20 %	
	D)	15-25 %	
	D)	13-23 /0	
24.	The	chemistry of natural groundwater flow systems can be used to determine	
	i.	Groundwater flow paths	
	ii.	Ground water mixing	
	iii.	Groundwater discharge	
	iv.	Groundwater flow rates	
	Cho	pose the correct option:	
	A)	i, iii and iv only	
	B)	ii and iv only	
	C)	ii only	
	D)	i, ii and iv only	
25.	surfa A) B)	ommon geochemical sequence in groundwater includeswaters near grace varying towaters in the deepest portions of formations. Bicarbonate and Carbonate Carbonate and Nitrate	round
	C)	Bicarbonate and Chloride	
	D)	Chloride and Nitrate	
26.	Amo	ong the following, which water is usually highly mineralized?	
	A)	Juvenile water	
	B)	Connate waters	
	C)	Meteoric waters	
	D)	Magmatic waters	
27.	bioc	issolved gas present in the groundwater which is derived from the undergonemical process.	round
	A)	Hydrogen sulfide	
	B)	Nitrogen	
	C)	Carbon dioxide	
	D)	Oxygen	
(22)	(A)	(8)	

(22)	(A)	(9)	[P.T.O
	D)	Faulting	
	C)	Fracture	
	B)	Jointing	
	A)	Cleavage	
32.	Wha plan	at term describes the tendency of certain minerals or rocks to es?	o break along parallel
	D)	Oblique-slip fault	
	C)	Strike-slip fault	
	B)	Thrust fault	
	A)	Normal fault	
31.		at type of fault results from horizontal compressional stress are angle reverse fault plane?	nd typically exhibits a
	D)	$0.16 \times EC \text{ in } \mu \text{ mhos/cm}$	
	C)	$0.32 \times EC \text{ in } \mu \text{ mhos/cm}$	
	B)	$0.48 \times EC$ in μ mhos/cm	
	A)	$0.64 \times EC$ in μ mhos/cm	
30.	TDS	in ppm is equal to	
	D)	$3.5 \Omega - m$	
	C)	$2.5 \Omega - m$	
	B)	$1\Omega - m$	
	A)	$0.32\Omega-\mathrm{m}$	
29.	Resi	stivity values for clay is	
	D)	Sonic logs	
	C)	Neutron logs	
	B)	Caliper logs	
	A)	Natural gamma logs	
28.	Spec	ific yield of unconfined aquifers can be obtained by using	

33.	Wh	Which type of fold has limbs that dip away from the axis in opposite directions?		
	A)	Anticline		
	B)	Syncline		
	C)	Monocline		
	D)	Overturned fold		
34.	Wh frac	ich type of strain results in the permanent deformation of rocks without sign eturing?	ificant	
	A)	Elastic strain		
	B)	Brittle strain		
	C)	Plastic strain		
	D)	Fracture strain		
35.		Which of the following is the external shape of a crystal reflects its internal atoms rrangement.		
	A)	Symmetry		
	B)	Reflection		
	C)	Unit Lattice		
	D)	Molecule		
36.	in a	occur in a cubic crystal with six identical faces because its atoms are arr cubic pattern with identical structure in three perpendicular directions.	anged	
	A)	Leucite		
	B)	Nepheline		
	C)	Halite		
	D)	Chabazite.		
(22)	(A)	(10)		

37. Consider the following statements:

Statement A: The angle between the incoming beam and a perpendicular to the interface is the angle of incidence.

Statement B: The angle between the outgoing beam and parallel to the interface is the angle of refraction.

Choose the correct option:

- A) A is correct B is wrong
- B) B is correct A is wrong
- C) Both A and B are correct
- D) Both A and B are wrong

38. Match the following:

	List - I	List - II		
i)	Wollastonite	1)	$\rm CaMgSi_2O_6$	
ii)	Ferrosilite	2)	MgSiO ₃	
iii)	Enstatite	3)	FeSiO ₃	
iv)	Diopside	4)	CaSiO ₃	

Choose the correct option:

- A) i-1, ii-2, iii-3, iv-4
- B) i-2, ii-4, iii-3, iv-1
- C) i-4, ii-3, iii-2, iv-1
- D) i-3, ii-4, iii-2, iv-1

39. Consider the following statement:

Assertion (A): If a crystal has certain symmetry, the unit cell must have at least as much symmetry.

Reason (R): Crystal consist of unit cells, the symmetry of the crystal can never be more than that of its unit cell.

Choose the correct option:

- A) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).
- B) Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).
- C) Assertion (A) is true and Reason (R) is false.
- D) Assertion (A) is false and Reason (R) is true.

40.	Ang	gles such as 30°, 45°, 6	0°, 90°	°, or 120° are called
	A)	Non Special angle		
	B)	Special angle		
	C)	General angle		
	D)	Normal angle		
41.	Mat	tch the following		
•11.	Ivia	Axis	Ro	tation angle
	i)	Ī	1)	90°
	ii)	-	2)	180°
		- -		
	iii)	3	3)	360°
	iv)	$\overline{4}$	4)	120°
		oose the correct opti	on:	
	A)	i-1, ii-2, iii-3, iv-4		
	B)	i-2, ii-4, iii-3, iv-1		
	C)	i-4, ii-3, iii-2, iv-1		
	D)	i-3, ii-2, iii-4, iv-1		
42.	Whi	ich of the following sl	10WS C	conchoidal fracture?
	A)	Wollastonite		
	B)	Copper		
	C)	Quartz		
	D)	Gold		
43.	In cl	osed form, does Dode	cahed	ron has how many faces
	A)	12		y 2000
	B)	24		
	C)	6		
	D)	8		
44.	Whi	ch of the following is	not be	longing to Pyroxene group.
	A)	Enstatite		and the state of t
	B)	Augite		
	C)	8		
	D)			
(22)	(A)			(12)
()	()			(12)

45.	Cra	nidium is a region between
	A)	Fixed cheek and glabella
	B)	Free cheek and glabella
	C)	Free cheeks and fixed cheeks
	D)	Cephalon and thorax
46.		mation of the relative rates of sedimentation have been calculated by comparing the ulation of
	A)	Living and fossil foraminifera
	B)	Living and Total foraminifera
	C)	Fossil and dead foraminifera
	D)	Lab culture foraminifera
47.	kno	nineral can be replaced by another mineral without any change in the external form is wn as
	A)	Isomorphs
	B)	Pseudomorphs
	C)	Polymorphs
	D)	Dimorphs
48.	The	Plant fossil Glossopter is indicates
	A)	Warm climate
	B)	Glacial to cool temperature
	C)	Arid climate
	D)	Moist to hot climate
49.		chinoid shell, on the oral side, when the mouth is surrounded by a ring of calcareous es is known as:
	A)	Ocular plates
	B)	Peristome
	C)	Genital plate
	D)	Periproct
50.	Shel	ls with first Ammonitic suture appeared in
	A)	Late Triassic
	B)	Late Permian
	C)	Late Devonian
	D)	Late Jurassic.

51.		preserved entire organism, unaltered and altered hard parts and naturally talks and casts are classed as	formed
	A)	Living fossil,	
	B)	Body fossil,	
	C)	Chemical fossil,	
	D)	Trace fossil.	
52.	Whi	ch one of the following is a planktonic Foraminifera	
	A)	Ammonia	
	B)	Operculina	
	C)	Globigerina	
	D)	Nummulites	
53.	Hun	nan beings evolved during which geologic period?	
	A)	Eocene	
	B)	Cretaceous	
	C)	Permian	
	D)	Cambrian	
2.1			
54.		study of the plant life of the geological past is	
	A)	Psilopsida,	
	B)	Palaeobotany,	
	C)	Megafossil,	
	D)	Thallophyta.	
55.	Whi	ch form of the graptolites is well known during upper Cambrian age?	
	A)	Tetragraptus	
	B)	Clonograptus	
	C)	Bryograptus	
	D)	All of the above	
56.	In th	e centre of the calyx, there is the axis of the corallite which is known as the	?
	A)	Fossula	
	B)	Epitheca,	
	C)	Collumella	
	D)	Corallum	
(22)	(A)	(14)	

57.	Duri	ing which geologic perio	d did Archa	eopteryx live?	
	A)	Cretaceous			
	B)	Jurassic			
	C)	Permian			
	D)	Tertiary.			
58.	The	was an era dom	inated by th	e dinosaurs.	
	A)	Precambrian			
	B)	Paleozoic			
	C)	Mesozoic			
	D)	Cenozoic			
59.	The	most primitive suture lin	ne in the Tri	lobites is described as	
	A)	Hypoparian			
	B)	Opisthoparian			
	C)	Proparian			
	D)	Gonatoparian			
60.		thickness of the Earth's	lower mant	le is aboutKms.	
	A)	1000			
	B)	1900			
	C)	2100			
	D)	2700			
61.	Cho	ose the correct pair		T	
		Fumaroles's type	<u> </u>	Temperature	
	A)	Solfataras	-0	Below 100°C	
	B)	Dry fumaroles	= 33	100 to 200°C	
	C)	Acid fumaroles		300 to 400°C	
	D)	Alkaline fumaroles	-	400 to 500°C	
(22)	(A)		(15)	[P.T.O

62.	Mate	ch the following:		
		List - I	List - II	
	1)	Planetesimal Hypothesis	i) Otto Schmidt	
	2)	Double star Hypothesis	ii) Jeans and Jeffreys	
	3)	Meteorite Hypothesis	iii) Chamberlin and Moulton	
	4)	Tidal Hypothesis	iv) Lyttleton	
	- 5	ose the correct option:		
	A)	1-iii, 2-i, 3-iv, 4-ii		
		1-ii, 2-i, 3-iv, 4-iii		
		1-i, 2-iii, 3-ii, 4-iv		
	D)	1-iii, 2-iv, 3-i, 4-ii		
	- /	G 45000 100 10 00 10 00 00 00 00 00 00 00 00		
63.	The	temperature of lavas during eruptions u	sually ranges between and	
	A)	800° C; 1100°C		
	B)	900° C; 1200°C		
	C)	900° C; 1500°C		
	D)	1100° C; 1500°C		
		*		
64.	The	hillocks made up of harder, durable and r	esistant rocks on the surface of the pen	eplains
	are t	ermed as .		
	A)	Monadnocks		
	B)	Inselbergs		
	C)	Mesa		
	D)	Hogbacks		
65.	and	tabular masses of more resistant rock reare very often elongated in the direction zontal. Ventifacts		
	B)	Yardangs		
	C)	Zeugen		
	D)	Pedestal rock		
66.	Whi	ch one of the following landforms has a swith a steep scrap on one side and a ge Escarpment Cuestas Mesa Butte		or hill
67.	The	hypothesis of sea-floor spreading was	first formulated by	
	A)	Tuzo Wilson		
	B)	Fred Vine		
	C)	Harry Hess		
	D)	Drummond Mathews		
(22)	(A)	(16)		

68.		nob-like obstruction in the path of the ice gets plastered above and around with dens and boulders, which are then moulded in to a low streamlined hill called
	A)	Crescentric gouges
	B)	Roches mountonnees
	C)	Askers
	D)	Drumlins
69.	The	deposits formed at the slip off slope of a meandering river is known as
	A)	Bajada
	B)	Point-bar
	C)	Alluvial fans
	D)	Cones
70.	Con	sider the following statement:
	Ass	ertion (A): Many geographical objects have inherently fuzzy spatial extents.
	Rea	son (R) : One common solution to this problem is to allow objects to have multiple representations which depends on the scale.
	Cho	oose the correct option:
	A)	Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).
	B)	Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).
	C)	Assertion (A) is true and Reason (R) is false.
	D)	Assertion (A) is false and reason (R) is true.
71.	Roa	d is the
	A)	Point map feature
	B)	Polygon map feature
	C)	Line map feature
	D)	None of the above
72.		hich of the following method allows ready manipulation of the data in a many to -one tionship of the attribute values and the sets of gris cells.
	A)	MAP Model
	B)	IMGRID Model
	C)	GRID Model
	D)	TIGER Model
(22)	(A)	(17) [P.T.O

		Errors	D	escription	
	i)	Missing Segment	1)	Delete node if needed	
	ii)	A gap between two segments	2)	Merge nodes or extend segment	
	iii)	An overshoot	3)	Indicate which arc to extend or w node to move	hich
	iv)	An undershoot	4)	Draw it	
	Cho	ose the correct option:			
	A)	i-1, ii-2, iii-3, iv-4			
	B)	i-2, ii-4, iii-3, iv-1			
	C)	i-4, ii-3, iii-2, iv-1			
	D)	i-3, ii-4, iii-2, iv-1			
74.	Cons	sider the following statements:			
	State	ement A : Difference in moisture tone.	content	of the soil or rock result in different	ence in
	State			by use of high contrast film, high cocessing technique such as dodgin	
	Cho	ose the correct option:			
	A)	A is correct B is wrong			
	B)	B is correct A is wrong			
	C)	Both A and B are correct.			
	D)	Both A and B are wrong			
75.	and i	is an expression of roughr t is the rate of change of tonal val		smoothness as exhibited by the in	nagery
	A)	Tone			
	B)	Texture			
	C)	Shadows			
	D)	Pattern			
76.	A(pixe	filter may be implemented by pixel) from the original, unpr	-	subtracting a low pass filtered limage.	image
	A)	Low pass filter			
	B)	Median Filter			
	C)	High Pass filter			
	D)	None of the above			
(22)	(A)		(18)		

73. Match the following

77.		is the orderly spatial arrangement of geological topographic or vegetation
	feat	ures.
	A)	Tone
	B)	Texture
	C)	Shadows
	D)	Pattern
78.		point where the satellite, travelling northwards, passes directly over the equator is ed the
	A)	Ascending node
	B)	Descending node
	C)	Equatorial node
	D)	Lateral node
79.	Rep	eat cycle of GOES Satellite
	A)	One per hour
	B)	Two per hour
	C)	Four per hour
	D)	Five per hour
80.		ch of the following is the correct order of elements of Earth's crust in decreasing or of their percentage?
	A)	Aluminium, Iron, Silicon, Oxygen
	B)	Oxygen, Aluminium, Iron, Silicon
	C)	Iron, Aluminium, Silicon, Oxygen
	D)	Oxygen, Silicon, Aluminium, Iron
81.	The	matrix of Packstone is
	A)	Clay
	B)	Mud
	C)	Silt
	D)	Sand

82.	The	crust and upper part of the mantle form a single unit called	
	A)	Asthenosphere	
	B)	Biosphere	
	C)	Lithosphere	
	D)	Hydrosphere	
83.	Mete	eorite containing hardened basaltic droplet chondrules known as	
	A)	Chondrite	
	B)	Achondrite	
	C)	Stony meteorite	
	D)	Iron meteorite	
84.	Roc	ks of mechanical origin having grain size finer than 1/16 mm is called as	
	A)	Rudite	
	B)	Arenite	
	C)	Lutite	
	D)	Tillite	
85.	Whi	ch of the following mineral is not used for Uranium-Lead method of dating?	,
	A)	Zircon	
	B)	Monazite	
	C)	Sphene	
	D)	Feldspar	
86.	The	average slope of continental shelf is	
	A)	4°	
	B)	0.05°	
	C)	0.5°	
	D)	1°	
(22)	(A)	(20)	

(22)	(A)	(21) [P.T.C	Э
	D)	Disconformity	
	C)	Blended unconformity	
	B)	Local-conformity	
	A)	Non-conformity	
		that grades into the underlying bed rock.	
92.	Whi	ch of the following is a surface of erosion, which may be covered by a thick residua	al
	D)	A is false but R is true.	
	C)	A is true but R is false.	
	B)	Both A and R is true but R is not the correct explanation of A.	
	A)	Both A and R are true and R is the correct explanation of A.	
		ose the correct option	
		son (R): They contain a lot of humus.	
		ertion (A): The Regur soil of the Deccan Plateau are black in colour	
91.		sider the following statement:	
01	0		
	D)	Autogeosyncline	
	C)	Exogeosyncline	
	B)	Miogeosyncline	
	A)	Eugeosynclines	
	is		
90.		thogeosyncline with actively subsiding areas and volcanics present with sediment	its
() - 0000-			
	D)	Shelf	
	C)	Open marine platform	
	B)	Carbonate platform	
	A)	Basin margin	
89.		siliferous limestone interbedded with marl is characteristic feature offaci	es
	**		
	D)	Non-clastic	
	C)	Clastic	
	B)	Orthochemical	
	A)	Allochemical	
	calle		pr/046
88.	In s	edimentary rocks the pattern formed by framework grains, matrix and cement	is
	(ע	Tute cast	
	D)	Flute cast	
	B) C)	Chevron Prod marks	
	A)	Groove marks	
87.	2 50	are asymmetrical elongate V-shaped depressions produced by objects hitti diment surface momentarily.	ng
X'/		are asymmetrical elongate V-shaped depressions produced by objects hitti	no

93.		n continued erosion of a nappe, and window sometimes a remnant of the thrust sheet ft as a relict block, which is called		
	A)	Klippe		
	B)	Window		
	C)	Contour		
	D)	Nappes		
94.	Whi	ch of the following fault is parallel to the dip of the country rock		
	A)	Dip Fault		
	B)	Diagonal Fault		
	C)	Strike Fault		
	D)	Transverse Fault		
95.		Which one is elongated large basins which are found submerged beneath the sea-water and contain very great thickness of sediments.		
	A)	Box Fold		
	B)	Kink bands		
	C)	Geoanticline		
	D)	Geosyncline		
96.	A gr	roup of small sized faults that overlaps each other in the region of their occurrence.		
	A)	Radial fault		
	B)	En echelon Fault		
	C)	Peripheral Fault		
	D)	Parallel Fault		
97.		gree of High-angle fault.		
	A)	More than 45°		
	B)	Less than 45°		
	C)	Less than 90°		
	D)	Mor than 90°		

(22)

(22) (A)

98.	The	stretch of the rock beds lying between any crest and any of the adjacent troughs on
		er side is known as the limb of the fold.
	A)	Limb
	B)	Axial plane
	C)	Axis
	D)	Hinge
99.		is the angle between a horizontal surface and the plane of the fault and is
	mea	sured in a vertical plane that strikes at right angles to the fault
	A)	Strike
	B)	Dip
	C)	Hade
	D)	Heave
100.	Join	ts, which have developed due to the tensile forces acting on the rocks
	A)	Shear joints
	B)	Compression joints
	C)	Tension joints
	D)	Mural joints

ROUGH WORK

(22) (A) (24)

Booklet Serial No. 220621

Test Booklet Series

TEST BOOKLET DRILLER

Written Test - 2024

(23)

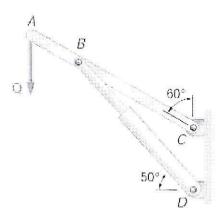
Time Allowed: Two Hours

Maximum Marks: 100

INSTRUCTIONS

- IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD 1. CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- Please note that it is the candidate's responsibility to encode and fill in the Roll Number 2. and Test Booklet Series Code A, B, C or D carefully and without any omission or discrepancy at the appropriate places in the OMR Answer /Response Sheet. Any omission/discrepancy will render the Response Sheet liable for rejection.
- You have to enter your Roll Number on the 3. Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.
- This Test booklet contains 100 items (questions). Each item comprises of four responses (answers). 4. You will select the response which you want to mark on the Answer Sheet/Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- You have to mark all your responses ONLY on the separate Answer /Response Sheet provided. See 5. directions in the Response Sheet.
- 6. All items carry equal marks.
- Before you proceed to mark in the Answer /Response Sheet, the response to various items in the 7. Test Booklet, you have to fill in some particulars in the Answer /Response Sheet as per instructions sent to you with your Admission Certificate.
- After you have completed filling in all your responses on the Response Sheet and the examination 8. has concluded, you should hand over to the Invigilator only the Answer /Response Sheet. You are permitted to take away with you the Test Booklet and Candidate's Copy of the Response Sheet.
- 9. Sheets for rough work are appended in the Test Booklet at the end.
- While writing Centre, Subject and Roll No. on the top of the Answer Sheet/Response Sheet in 10. appropriate boxes use "ONLY BALL POINT PEN".
- 11. Penalty for wrong answers:

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY THE CANDIDATE IN THE WRITTEN TEST (OBJECTIVE TYPE QUESTIONS PAPERS).


- There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, (0.25) of the marks assigned to that question will be deducted as penalty.
- If a candidate gives more than one answer, it will be treated as a wrong answer even if one of the (ii)given answers happens to be correct and there will be same penalty as above for that question.
- If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO

P.T.O. (23)(A)/2024

(23)(A)

- 1. "The moment of resultant of all the forces in a plane about any point is equal to the algebraic sum of moment of all the forces about the same point" is called the _____.
 - A) Lami's theorem.
 - B) Parallelogram law.
 - C) Varignon's theorem.
 - D) Triangle law.
- 2. The resultant of two forces P and Q is R. If Q is doubled, the new resultant is perpendicular to P. Then.
 - A) P = Q
 - B) Q = R
 - C) Q = 2R
 - D) None of the above
- 3. The hydraulic cylinder BD exerts on member ABC a force P directed along line BD. Knowing that P must have a 750-N component perpendicular to member ABC, the magnitude of the force P will be _____

- A) 2320 N
- B) 2190 N
- C) 1984 N
- D) 1759 N

4.	A sm	nooth cylinder lying on a is in neutral equilibrium.	
	A)	Curved surface.	
	B)	Convex surface.	
	C)	Horizontal surface.	
	D)	Inclined surface.	
5.	The a	angle between two equal forces 'P', when their resultant is equal to 'P' is	
	A)	120°	
	B)	90°	
	C)	151°	
	D)	45°	
6.	50 m	linder of radius 250 mm and weight, W = 10kN is rolled up an obstacle of ham by applying a horizontal force P at its centre as shown in the figure. All interessumed frictionless. The minimum value of P is	
	A)	4.5 kN	
	B)	5.0 kN	
	C)	6.0 kN	
	D)	7.5 kN	
7.	three	eight of 200 N is to be lifted by an effort of 60 N, by second system of pulleys have pulleys in the upper block and two pulleys in the lower block. The velocity raystem will be	
	A)	2	
	B)	3	
	C)	1 5	
/	D)		
(23)((A)	(4)	

8.	A car moving with speed u can be stopped at a minimum distance 'x' when brakes are applied. If the speed becomes 'n' times, the minimum distance over which the car can be stopped would take the value		
	A)	x/n	
	B)	nx	
	C)	x/n^2	
	D)	n^2x	
9.		ody is rotating with an angular velocity of 5 rad/s. After 4s, the angular velocity of the y becomes 13 rad/s. The angular acceleration of the body will be	
	A)	3 rad/s ²	
	B)	2 rad/s^2	
	C)	1 rad/s^2	
	D)	1.5 rad/s^2	
10.	of h thro	A is thrown straight up with an initial speed of V_0 and reaches a maximum elevation before falling back down. When A reaches its maximum elevation, a second ball is own straight upward with the same initial speed V_0 . At what height, y, will the balls as paths?	
	A)	y = h/2	
	B)	y > h/2	
	C)	y < h/2	
	D)	y = 0	
11.		velocity of a body is the velocity with which the distance travelled by the y in the same interval of time is the same as with variable velocity.	
	A)	Initial.	
	B)	Final	
	C)	Average	
	D)	Instantaneous.	
(23)	(A)	(5) [P.T.O.	

- 12. The acceleration of a particle moving with simple harmonic motion is maximum when the particle is at Its extreme position. A) B) Its mean position. A point between its mean position and extreme position. D) None of the above 13. Two rigid bodies of mass 5 kg and 4 kg are at rest on a frictionless surface until acted upon by a force of 36 N as shown in the figure. The contact force generated between the two bodies is . 36 N 5 kg 4 kg 4.0 NA) B) 7.2 N C) 9.0 N D) 16.0 N 14. The ratio of tension on the tight side to that on the slack side in a flat belt drive is Proportional to the product of the coefficient of friction and lap angle. A) An exponential function of the product of the coefficient of friction and lap angle. B) C) Proportional to lap angle.
- 15. A machine having an efficiency greater than 50% is known as

Proportional to the coefficient of friction.

- A) Reversible machine.
- B) Non reversible machine.
- C) Neither reversible nor non reversible machine.
- D) Ideal machine.

D)

16.	A thin rod of length L and mass M will have a moment of inertia about an axis passing through one of its edges and perpendicular to the rod is		
	A)	$\frac{ML^2}{12}$	
	B)	$\frac{ML^2}{6}$	
		$\frac{ML^3}{3}$	
	D)	$\frac{ML^2}{3}$	
17.	opposite to the acceleration of the centroid.		
	Reason (R): It has always a tendency to retard the motion.		
	A)	Both A and R are individually true and R is the correct explanation of A.	
	B)	Both A and R are individually true but R is NOT the correct explanation of A.	
	C)	A is true but R is false.	
	D)	A is false but R is true.	
18.		The perpendicular distance between the diameter of a semi - circular area to its centre is given by	
	A)	$3r/8\pi$	
	B)	$4r/3\pi$	
	C)	$3r/4\pi$	
	D)	$5r/4\pi$	
19.	Water from a tank with a capacity of 18000 litres is to be lifted in 20 minutes by a through a height of 12 m. If the efficiency of the pump is 65%, the power of the will be (Assume $g = 10 \text{ m/s}^2$).		
	A)	1170 W	
	B)	1800 W	
	C)	2160 W	
	D)	2000 W	
(23)	(A)	(7) [P.T.C).

(23)	(A)	(8)	
	D)	Hypersonic flow.	
	C)	Super - sonic flow.	
	B)	Sonic flow.	
	A)	Sub - sonic flow.	
23.	Whe	en the Mach number is less than unity, the flow is called	
	D)	12.5 N/m	
	C)	1.25 N/m	
	B)	0.0125 N/m	
	A)	0.125 N/m	
22.		surface tension in a soap bubble of 40 mm diameter, when the inside pressur N/m ² above atmospheric pressure is	e is
	D)	Data insufficient, cannot be predicted.	
	C)	More than.	
	B)	Same as	
	A)	Less than	
21.	Pow	ver loss in an orifice meter is that in a venturi meter.	
	D)	1.2	
	C)	0.5	
	B)	2.0	
	A)	1.0	
20.		ratio of the depth of flow to the hydraulic radius for the most economical trapezo ion, in open channel flow is	idal

(23)	(A)	(9) [P.T.0	J.
	D)	2.25%	_
	C)	1.75%	
	B)	1.50%	
	A)	1.25%	
27.		error of 1 percentage in measuring the head of water over the crest of a rectangule; produces an error in the discharge which is equal to	ar
	D)	May approach 100% for hemispherical bucket vanes.	
	C)	May exceed 50% with inclined flat - plate vanes.	
	B)	May approach 100% for frictionless vanes.	
	A)	May never be beyond 50% even theoretically.	
26.	The	efficiency of an impulse turbine	
	D)	1 low over spiniways.	
	D)	Flow over spillways.	
	B) C)	Motion of ship in deep seas. Cruising of a missile in the air.	
	A)	Motion of submarine at large depths.	
25.		Reynold's and Froude's numbers assume significance in one of the followin	ıg
	D)	Orifice.	
	C)	Venturi.	
	B)	Triangular notch.	
	A)	Rectangular notch.	
24.	Flow	rate in an open channel is more accurately measured using	

28.	The	operating point of a pump installed in a pipeline is decided by
	A)	The speed of the pump.
	B)	The opening of the delivery valve.
	C)	The length of the pipeline.
	D)	The system's characteristic.
29.	Bral	king jet in an impulse turbine is used
	A)	To break the jet of water.
	B)	To bring the runner to rest in a short time.
	C)	To change the direction of the runner.
	D)	None of the options are valid.
30.	The	jet ratio is defined as the ratio of the
	A)	The diameter of the jet to the diameter of the Pelton wheel.
	B)	Velocity of jet to the velocity of Pelton wheel.
	C)	Diameter of the Pelton wheel to the diameter of the jet.
	D)	Velocity of the Pelton wheel to the velocity of the jet.
31.	The	specific speed from 160 to 500 rpm of a centrifugal pump indicates that the pump is
	A)	Slow speed with the radial flow at the outlet.
	B)	Medium speed with radial flow at the outlet.
	C)	High speed with the radial flow at outlet.
	D)	High speed with axial flow at the outlet.
(23)	(A)	(10)

(23))(A)	(11)	Р.Т.О.
	D)	Plunger pump.	
	C)	Cam and piston pump.	
	B)	Gear pump.	
	A)	Screw pump.	
35.	Whi	ich type of pump is different from others in the same group?	
	D)	0.007	
	D)	0.067	
	C)	0.529	
	B)	0.293	
	(m ³ /A)	2.930	
34.	dept	ring an experiment on a hydraulic jump, in a rectangular open channel 0.5 m with of water changes from 0.2 m to 0.5 m. The discharge in the channel will be	vide the
	D)	700	
	D)	900	
	C)	90	
	B)	9.0	
	A)	0.9	
33.	Dim	nensionless specific speed for Kaplan turbine is about	
	D)	275.4	
	C)	241.5	
	B)	215.5	
	A)	175.4	
32.		rbine develops 10000 kW under a head of 25 meters at 135 r.p.m. Its specific (SI Unit).	c speed

36.	Power transmitted through pipes will be maximum when	
	A)	Head loss due to friction = $\frac{1}{2}$ total head at inlet of the pipe.
	B)	Head loss due to friction = $\frac{1}{4}$ total head at inlet of the pipe.
	C)	Head loss due to friction = total head at inlet of the pipe.
	D)	Head loss due to friction = $\frac{1}{3}$ total head at inlet of the pipe.
37.	Mar	nning and Chezy formulae are valid for
	A)	Steady flow.
	B)	Steady uniform flow.
	C)	Steady non - uniform flow.
	D)	Unsteady uniform flow.
38.	The	strength of a jump is governed by the
	A)	Upstream velocity.
	B)	Downstream velocity.
	C)	Upstream froude number.
	D)	Bed slope.
39.	For	engineering materials, Poisson's ratio lies between
	A)	0 and 1
	B)	-1 and +1
	C)	-0.5 and +0.5
	D)	0 and + 0.5
(23)	(A)	(12)

40.	For	the tension test on a mild steel bar, arrange the sequence of material properties.
	1.	Yield point.
	2.	Limit of proportionality.
	3.	Breaking stress.
	4.	Ultimate stress.
	Cho	ose the correct option.
	A)	2-1-3-4
	B)	2-1-4-3
	C)	1-2-4-3
	D)	1-2-3-4
41.		e modulus of rigidity is $80 kN/mm^2$ and the bulk modulus is $140 kN/mm^2$, then the son's ratio is
	A)	0.20
	B)	0.25
	C)	0.26
	D)	0.33
42.	long	ylindrical bar of 20 mm diameter and 1 m length is subjected to a tensile test. Its gitudinal strain is 4 times that of its lateral strain. If the modulus of elasticity is 10 ⁵ N/mm ² , then its modulus of rigidity will be.
	A)	$8 \times 10^6 \text{ N/mm}^2$
	B)	$8 \times 10^5 \text{N/mm}^2$
	C)	$0.8 \times 10^4 \text{ N/mm}^2$
	D)	$0.8 \times 10^5 \text{N/mm}^2$
(23))(A)	(13) [P.T.O.

43. Match the following:

Type of material

P.

0

2. Cork

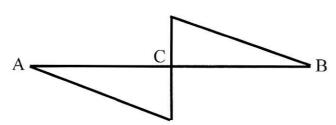
1.

O. 0.15

Poisson's ratio

3. Rubber

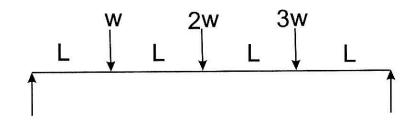
R. 0.25


4. Isotropic Materials

Concrete

- S. 0.33
- T. 0.50

Choose the correct option:


- 1-Q, 2-P, 3-T, 4-S. A)
- B) 1-Q, 2-P, 3-T, 4-R.
- C) 1-R, 2-P, 3-T, 4-S.
- D) 1-R, 2-T, 3-P, 4-S.
- **44.** Choose the wrong statement.
 - The shear force at any section of a beam is equal to the total sum of the forces acting on the beam on any one side of the beam.
 - The magnitude of the bending moment at any section of a beam is equal to the B) vector sum of moments (about the section) due to the forces acting on the beam on any one side of the beam.
 - A diagram that shows the values of shear forces at various sections of the structural C) member is called a shear force diagram.
 - The shear force diagram and bending moment diagram will be identical for a simply D) supported beam with a midspan couple.
- 45. In the bending moment diagram for simply supported beam is of the form given below, then the load acting on the beam is

- A) A concentrated force at point 'A'.
- B) A uniformly distributed load over the whole length of the beam.
- C) Equal and opposite moments applied at points 'A' and 'B'.
- D) A moment applied at point 'C'.

(23)(A)

46. The maximum shear force for a simply supported beam loaded as shown in the figure will be _____

- A) Zero.
- B) W
- C) 2.5W
- D) 3.5W

47. A thin cylinder with both ends closed is subjected to internal pressure p. The longitudinal stress at the surface has been calculated as σ_0 . Maximum shear stress will be equal to

- A) $2\sigma_0$
- B) $1.5 \,\sigma_0$
- C) σ_0
- D) $0.5 \, \sigma_0$

48. The shearing stress in a solid shaft is not to exceed 45N/mm² when the torque transmitted is 40,000 N-m. The minimum diameter of the shaft will be _____

- A) 12.5 mm
- B) 16.5 mm
- C) 18.0 mm
- D) 20.0 mm

49.	A th	in cylindrical shell of diameter 'd', ler mal pressure 'p', the ratio of longitudin	ngth ' al str	'1' and thickness 't' is subjected to an ain to hoop strain is
	A)	pd/2t.		
	B)	pd/2t(1-1/m).		
	C)	(m-2)/(2m-1).		
	D)	(2m-1)/(m-2).		
50.	Gro	up I gives a list of test methods for eval	uatin	g the properties of aggregates.
	Gro	up II gives the list of properties to be ev	aluat	ed.
		Group - I : Test Methods	Gro	oup - II : Properties
	P.	Soundness Test	1.	Strength
	Q.	Crushing Test	2.	Resistance to weathering
	R.	Los Angeles Test	3.	Adhesion
	S.	Stripping Value Test	4.	Hardness.
	The	correct match of test methods under G	roup	- I to properties under Group - II is
	A)	P-4, Q-1, R-2, S-3.		
	B)	P-2, Q-4, R-3, S-1.		
	C)	P-2, Q-1, R-4, S-3.		
	D)	P-3, Q-4, R-1, S-2.		
		8		
(23)	(A)	(16)		

(23)	(A)	(17)	[P.T.O.
	D)	5.3 degree.	
	C)	0.53 degree	
	B)	0.053 degree	
	A)	0.0053 degree	
53.	unif	3 m long prismatic shaft of 50 mm diameter restrained at its ends is iformly distributed torque of 12.6 kNm. If the rigidity modulus is 50 GPa formation of the shaft is	
	D)	1.90×10 ⁻³	
	C)	0.85×10^{-3}	
	B)	0.20×10 ⁻³	
	A)	0.085×10^{-3}	
52.	The	thin cylindrical drum 100 cm in diameter and 10 m long has a shell thin the drum is subjected to an internal pressure of 400 N/cm ² , If $E = 2 \times 10^{-5}$ is son's ratio = 0.3, then the circumferential strain will be	107 N/cm2 and
	D)	(i) is False and (ii) is True.	
	C)	(i) is True and (ii) is False.	
	B)	Both (i) and (ii) are False	
	A)	Both (i) and (ii) are True.	
	Whi	hich of the following is TRUE?	
	ii.	Use of air - entrained concrete is required in environments where and thawing is expected.	cyclic freezing
	i.	Air entrainment reduces the water demand for a given level of work	cability.
51.	Con	onsider the following statements for air - entrained concrete:	

54.		vlindrical vessel is said to be thin if the ratio of its internal diameter to the wall kness is
	A)	Less than 20
	B)	Equal to 20
	C)	More than 20
	D)	None of the above.
55.	The	torsional rigidity of a shaft is equal to
	A)	Product of modulus of rigidity and polar moment of inertia.
	B)	Sum of modulus of rigidity and polar moment of inertia.
	C)	Difference of modulus of rigidity and polar moment of inertia.
	D)	Ratio of modulus of rigidity and polar moment in inertia.
56.	a sp	ollow circular shaft 2 m long is required to transmit 1000 kW power when running at eed of 300 rpm. If the outer diameter of the shaft is 150 mm and the inner diameter 20 mm, the strain energy stored in the shaft will be
	A)	26.32 Joules.
	<u>B</u>)	81.36 Joules.
	C)	31.81 Joules.
	D)	61.43 Joules.
57.	line mor	urveyor's steel tape 30 m long has a cross - section of 15 mm×0.75 mm. With this, AB has been measured as 150 m. If the force applied during measurement is 120 N te than the force applied at the time of calibration, the elongated length of the be
	A)	1.2 mm
	B)	1.6 mm
	C)	1.8 mm
	D)	2.0 mm
(23)	(A)	(18)

(23)	(A)	(19) [P.T]	Ю.
	D)	(n-4) binary joints	
	C)	(n-3) binary joints	
	B)	(n-2) binary joints	
	A)	(n-1) binary joints	
61.	If'n	' links are connected at the same point, the joint is equivalent to	
	D)	125	
	C)	100	
	B)	62.50	
=	A)	31.25	
60.		slenderness ratio of a 5 m long column hinged at both ends and having a circus - section with a diameter of 16 cm is	ular
	D)	Decrease the heat of hydration.	
	C)	Enhance hardening.	
	B)	Prevent the quick setting.	
	A)	Increase workability.	
59.	Gyp	sum is typically added in cement to	
	D)	2.64 and 2.78	
	C)	2.42 and 2.93	
	B)	2.42 and 2.78	
	A)	2.42 and 2.63	
58.	bitum in the	men having respective values of specific gravity 2.60, 2.70, 2.65, and 1.01, are miner relative proportions (% by weight) of 55.0, 35.8, 3.7 and 5.5 respectively. The pretical specific gravity of the mix and the effective specific gravity of the aggregate mix respectively are	xed The

- **1**5~

62.	Whic	ch of the following is an inversion of a double - slider crank chain?	
	A)	Whitworth quick return mechanism.	
	B)	Reciprocating engine.	
	C)	Scotch yoke mechanism.	
	D)	Rotary engine.	
63.	Whe lies?	en a slider moves on a fixed link having a curved surface, its instantaneous ce	ntre
	A)	On their point of contact.	
	B)	At the centre of curvature.	
	C)	At the centre of the circle.	
	D)	At the pinpoint.	
64.	-	point moves along a straight line that is rotating, then the tangential componer eleration is	nt of
	Whe	ere, $v = velocity of a point along the straight line$	
		ω = angular velocity of the line	
		α = angular acceleration of the line	
		r = radius of the point.	
		V = tangential velocity of the line = ω r.	
	A)	V^2/r	
	B)	$(dv/dt)-\omega^2 r$.	
	C)	dv / dt	
	D)	$2v\omega + r\alpha$	
(23)	(A)	(20)	

(23)	(A)	(21) [P.T.0	Ο.
	D)	Working depth.	
	C)	Clearance.	
	B)	Addendum.	
	A)	Dedendum.	
68.	The	radial distance of a tooth from the pitch circle to the bottom of the tooth is called	ed
	D)	Curve.	
	C)	Straight line.	
	B)	Circle.	
	A)	Parabola.	
67.	The	path of contact in the involute tooth profile is a	
	D)	Zero at the pitch point.	
	C)	Minimum at the engagement of teeth. Zero at the pitch point.	
	B)	Maximum at the engagement of teeth	
	A)	Same at all points of contact. Maximum at the engagement of teeth	
υυ.			
66.	In th	ne case of involute gear teeth, the pressure angle is	
	D)	Primary unbalanced forces decrease.	
	C)	Primary unbalanced forces increase.	
	B)	Secondary unbalanced forces decrease.	
	A)	Secondary unbalanced forces increase.	
65.	Ifth	e ratio of the length of the connecting rod to the crank increases,	

69.	If the axes of the first gear and the last gear of a compound gear train are coaxial, t gear train is known as		
	A)	Simple.	
	B)	Epicyclic.	
	C)	Reverted	
	D)	Compound.	
70.		governor is said to be when the speed of the engine fluctuates continuous and below the mean speed.	ously
	A)	Isochronous.	
	B)	Hunting.	
	C)	Insensitive.	
	D)	Stable.	
71.		power transmitted by a belt is maximum when the maximum tension in the bal to.	elt is
	A)	T_{c}	
	B)	2T _c	
	C)	3 T _c	
	D)	4T _c	
72.	The	e frictional torque transmitted in a flat pivot bearing, considering uniform press	ure is
	Wh	ere μ = coefficient of friction.	
		W = load over the bearing, and	
		R = radius of the bearing surface.	
	A)	$(1/2) \mu WR$	
	B)	$(2/3) \mu WR$	
	C)	$(3/4) \mu WR$	
	D)	μ WR	
(23)	(A)	(22)	

73. The retardation of a flat - faced follower when it has contact at the apex of the nose of a circular arc cam is given by

Where OQ = distance between the center of circular flank and centre of nose?

- A) $\omega^2 \times OQ$
- B) $\omega^2 \times OQ \sin \theta$
- C) $\omega^2 \times OQ \cos \theta$
- D) $\omega^2 \times OQ \tan \theta$
- 74. In a turning moment diagram, the variation of energy above and below the mean resisting torque line is called
 - A) Fluctuation of energy.
 - B) Maximum fluctuation of energy.
 - C) Coefficient of fluctuation of energy.
 - D) Range of energy.
- 75. In a radial cam, the follower moves.
 - A) In a direction perpendicular to the cam axis.
 - B) In a direction parallel to the cam axis.
 - C) In any direction irrespective to the cam axis.
 - D) Along the cam axis.
- **76.** The swaying couple is maximum or minimum when the angle of inclination of the crank to the line of stroke is equal to
 - A) 45° and 135°
 - B) 90° and 135°
 - C) 135° and 225°
 - D) 45° and 225°

	A)	Ductile materials.							
	B)	Brittle materials.							
	C)	Any material at high - cutting speed.							
	D)	Any m	netal at	a low de	epth of c	ut.			
78.	Cera	amic cu	tting to	ols shou	ıld be us	sed with			
	A)	Cuttin	g fluid.						
	B)				because	of their bi	rittlen	ness.	
	C)	Very h	igh cut	ting spe	ed.				
	D)	Old m	achine	tools.					
79.	Mat		with li	st II an	d select	the corre	ct ans	swer using the codes given below	the
		List -	I				List	- II	
		(tool wear)				(rela	ated to)		
	1.	Corro	sive we	ear			i.	Thermo Mechanical Process	
	2.	Adhesion wear Fatigue wear				ii.	Chemical wear		
	3.					iii.	Protruding particles		
	4.	Abrasion wear				iv.	Attrition wear		
	Cod	les.							
		1	2	3	4				
	A)	ii	iv	iii	i				
	B)	ii	iv	i	iii				
	C)	iv	ii	i	iii				
	D)	ii	iii	iv	i				
80.	Whi	ich of th	ne follo	wing op	erations	s can be re	egarde	ed as a chipless operation?	
	A)	Borin	g.						
	B)	Ream	ing.						
	C)	Millir	ıg.						
	D)	Knurl	ing.						

(24)

77. Discontinuous chips can form during the cutting of

(23)(A)

(23)	(A)	(25)	IP.T.O.
	D)	2 and 4 are true.	
	C)	3 and 4 are true.	
	B)	1 and 2 are true.	
	A)	2 and 3 are true.	
	Oft	nese statement	
	4.	Uniform - density products are easily produced.	
	3.	Mechanical properties of the products are superior.	
	2.	Wastage of materials is minimum.	
	1.	Net - shaped object can be made	
83.	Cons	sider the following advantages of powder metallurgy	
	D)	The surface finish improves after every drawing stage.	
	C)	Accuracy in dimensions is not possible otherwise.	
	B)	Annealing is needed between stages.	
	A)	It is not possible to reduce in one stage.	
82.	Tanc	dem drawing of wires and tubes is necessary because	
	- /	1 2 7 - 6	
	D)	Open - die progressive forging.	
	C)	Closed die press forging.	
	B)	Open die upset forging.	
	A) Closed die drop forging.		
81.	Which one of the following processes is most commonly used for the forging of bolt heads of hexagonal shapes?		

84.	In powder metallurgy, the strength of the green compact is achieved by		
	A)	Tempering.	
	B)	Compressed tempering.	
	C)	Sintering.	
	D)	None of the above.	
85.	The	metal extrusion process is generally used for producing.	
	A)	Uniform solid sections.	
	B)	Uniform hollow sections.	
	C)	Uniform solid and hollow sections.	
	D)	Improved physical property.	
86.	The	following process provides the highest dimensional accuracy.	
	A)	Cylindrical turning.	
	B)	Jig boring.	
	C)	Shaping	
	D)	Milling.	
87.	Gan	g milling is used for	
	A)	Large workpieces.	
	B)	Small workpieces.	
	C)	A number of milling cutters are used to cut simultaneously.	
OSCIENZI ANAN	D)	Only one milling cutter is used to cut heavy workpiece.	
(23)	(A)	(26)	

88.	The	machining operation used to enlarge an existing hole is termed.	
	A)	Drilling.	
	B)	Boring.	
	C)	Counter sinking.	
	D)	Reaming.	
89.	Necl	k formation shows after	
	A)	Yield point.	
	B)	Ultimate point.	
	C)	Elastic point.	
	D)	Failure point.	
90.	A me	easure of Rockwell hardness is the	
	A)	Depth of penetration of indenter.	
	B)	Surface area of indentation.	
	C)	Projected area of indentation.	
	D)	Height of rebound.	
91.	Shrin	nkage allowance on pattern is produced to compensate for shrinkage when	
	A)	The temperature of liquid metal drops from pouring to freezing temperat	ure.
	B)	The metal changes from liquid to solid state at freezing temperature.	
	C)	The temperature at the solid phase drops from freezing to room temperat	ure.
/a = 1	D)	The temperature of metal drops from pouring to room temperature.	
(23)	(A)	(27)	[P.T.O

(23))(A)	(28)	
	D)	To do an effective comparison between different layouts or methods of doingob.	ng the
	C)	To act as a permanent record of the method and time of activities of the op and the machine.	erator
	B)	To obtain motion time data for time standards.	
	A)	To study the relationship of the activities of the operator and the machine means of timing operations.	e as a
94.	Whi	ich among the following is not the applications of Micro motion study?	
	D)	\Rightarrow	
	C)		
	B)	∇	
	A)		
93.	Whi	ch method study symbol is used when a dimension check is performed on an ob-	oject?
	D)	Cycle time.	
	C)	Basic time.	
	B)	Standard time.	
	A)	Normal time.	
92.		time taken by an operator for the completion of the job in a given working conc lled as	dition

95.	Which among the following is not the principle of Design for Manufacturing and Assembly (DFMA)?		
	A)	Use standard components and tools.	
	B)	Simplify assembly.	
	C)	Design products to be robust.	
	D)	Use different components and parts.	
96.	6. If a tool breaks, the process of removing the tool from its holder and replacing it with new one must be followed. A small amount of time can be added to a regular schedule accommodate for delays or other justifiable work items. What kind of allowance is that		
	A)	Interference allowance.	
	B)	Variable allowance.	
	C)	Policy allowance.	
	D)	Relaxation allowance.	
97.	(370)	stematic approach to analysing the causes and effects of product failures and also sipates failures and prevents them from occurring is called as	
	A)	Failure Mode Effect and criticality Analysis.	
	B)	Value Engineering.	
	C)	Value Analysis.	
	D)	Fault Tree Analysis.	
98.	Whi	ch of the following situations demand for the evaluation of make or buy decisions?	
	1.	When the organisation introduces new products.	
	2.	The constant demand for the company's products.	
	3.	Deteriorating quality and delivery commitment of the supplier if presently the item is bought.	
	The	correct answer/s is/are.	
	A)	3 only	
	B)	2 and 3 only	
	C)	1 and 3 only	
	D)	1, 2 and 3	
(23)((A)	(29) [P.T.O.	

99. Consider the following statements:

Assertion (A): Proximity to market condition assumes added importance in

selecting the location of the enterprise.

Reason (R): If the products manufactured are fragile and susceptible to spoilage

it is advisable to keep the manufacturing site closer to the market.

The correct answer is

A) A and R are both correct and R is the correct explanation of A.

- B) A and R are both correct and R is NOT the correct explanation of A.
- C) A is correct, but R is NOT correct.
- D) A is NOT correct, but R is correct.

100. Identify the correct match:

List - I

- 1. Principle of integration
- 2. Principle of Flow
- 3. Principle of Minimum Material Handling.
- 4. Principle of Minimum distance

List - II

- i. Unites men, materials, machines supporting services, and others
- ii. Lesser material handling equipment.
- iii. No backtracking
- iv. Lesser movement of man and materials.

Choose the correct option:

- i ii iii iv
- A) 1 2 3 4
- B) 1 3 2 4
- C) 2 1 4 3
- D) 2 3 1 4

ROUGH WORK

(23)(A) [P.T.O.

ROUGH WORK

(23)(A)

(32)