| 8.   | (a)   | Write Procedure of Kolmogorov–Smirinov Non Parametric Test.<br>20                                                                                            |  |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | (b)   | Write the procedure for Mann-Whitney U–test and what is its equivalent parametric test ? 20                                                                  |  |
|      | (c)   | Describe the Nature of Nonparametric tests and give a brief                                                                                                  |  |
|      |       | information on their merits and limitations. 20<br>SECTION–III                                                                                               |  |
| 9.   | (a)   | Define Malanobis $D^2$ statistic and write about the applications                                                                                            |  |
| ).   | (u)   | of this distribution. 15                                                                                                                                     |  |
|      | (b)   | What are the merits and limitations of Hotling's T <sup>2</sup> Statistic in<br>Multivariate data analysis ? 15                                              |  |
|      | (c)   | Give a brief note on the importance of Discriminant Analysis. 10                                                                                             |  |
|      | (d)   | Give the method of fitting a polynomial regression of order k<br>by the method of least squares. 20                                                          |  |
| 10.  | (a)   | Find coefficients of Partial Correlation $r_{12.3}$ and $r_{13.2}$ when the simple correlations are $r_{12} = 0.57$ , $r_{13} = 0.82$ , $r_{23} = 0.63$ . 20 |  |
|      | (b)   | Prove that for a tri-variate population $1-R_{1,23}^2 = (1 - r_{12}^2)$<br>$(1 - r_{13,2}^2).$ 20                                                            |  |
|      | (c)   | Find $R_{1.23}$ , $b_{12.3}$ for $r_{12} = 0.7$ , $r_{13} = 0.35$ , $r_{23} = 0.65$ , ' $\sigma_1 = 2$ , $\sigma_2 = 3$ , $\sigma_3 = 1$ . 20                |  |
| 11.  | (a)   | State the Mathematical Model and its assumptions for analysis of variance in one way classification of data. 20                                              |  |
|      | (b)   | Describe the Gauss = Markoff setup behind the ANOVA for 2 way classification of data. 20                                                                     |  |
|      | (c)   | Compare the concepts of Simple Correlation and SimpleRegression.20                                                                                           |  |
| 12.  | (a)   | Define Bivariate Normal Population and state its properties. 20                                                                                              |  |
|      | (b)   | Explain the procedure for testing the significance of regression                                                                                             |  |
|      |       | coefficients in a linear regression. 20                                                                                                                      |  |
|      | (c)   | Give the advantages and disadvantages in fitting of Orthogonal Polynomials. 20                                                                               |  |
| HRI- | 28386 | 4 400                                                                                                                                                        |  |

**Total No. of Printed Pages : 4** 

Roll No.

## 1[CCE.M]1



Time : Three Hours

Maximum Marks: 300

## **INSTRUCTIONS**

- Answers must be written in English. (i)
- The number of marks carried by each question is indicated at (ii) the end of the question.
- The answer to each question or part thereof should begin on a (iii) fresh page.
- (iv) Your answers should be precise and coherent.
- The part/parts of the same question must be answered together  $(\mathbf{v})$ and should not be interposed between answers to other questions.
- Candidates should attempt any five questions choosing at most (vi) two from each section.
- (vii) If you encounter any typographical error, please read it as it appears in the text book.
- (viii) Candidates are in their own interest advised to go through the General Instructions on the back side of the title page of the Answer Script for strict adherence.
- No continuation sheets shall be provided to any candidate under (ix) any circumstances.
- Candidates shall put a cross (X) on blank pages of Answer (x) Script.
- No blank page be left in between answer to various questions. (xi)

HRI-28386

1

Contd.

## SECTION-I

- (a) The odds in favour of winning a game by player A are 2 to 3 and the odds against winning the game by player B are 3 to 4. If both players are making their efforts independently find the probabilities of :
  - (A) Both will win the game
  - (B) None will win the game
  - (C) Only one will win the game
  - (D) At least one will the game. 20
  - (b) Name the methods of estimation and explain the method of least squares to estimate the parameters of a polynomial of  $2^{nd}$  degree. 10
  - (c) Explain the terms Statistical Hypothesis and Sample Space. 10
  - (d) Distinguish the difference between one way and two way classified data. 20
- 2. (a) Let the p.d.f. of a random variable X is  $f(x) = k (x^2 2x + 3)$ ,  $0 \le X \le 2$ ; f(x) = k (1 - 2x),  $2 \le X \le 3$ ; f(x) = K(x - 2),  $3 \le X \le 4$ ; f(x) = 0, otherwise; Let the event  $A = 1/2 \le X \le 5/2$ ,  $B = 1 \le X \le 4$ ; then find P(A/B) and P(B/A) while finding k value. 30
  - (b) State and prove Cauchy–Schwartz Inequality.
  - (c) State and prove Baye's Theorem. 15
- 3. (a) Show that the Pearson's coefficient beta-2 is greater than or equal to 1. 10
  - (b) Define Karl Pearson's Coefficient of Correlation and show that it is invariant of change of origin and scale. 20
  - (c) Find the correlation coefficient between X, Y when their joint probability density function is  $f(X, Y) = ax^2(y + 1)$ ; for  $0 \le X \le 2$ ;  $1 \le Y \le 3$ ; f(x, y) = 0, Otherwise. 30
- (a) Write a Joint Probability distribution for the outcomes of X, Y; where X is the number of heads when two fair coins are tossed simultaneously, and Y is the outcome on a throw of a fair die.
  20

- (b) Given the probabilities, P(X = 1, Y = -1) = 1/6; P(X = 0, Y = -1) = 1/12; P(X = -1, Y = -1) = 1/12; P(X = 1, Y = 0) = 3/12; P(X = -1, Y = 0) = 1/12; P(X = 0, Y = 0) = 1/6; P(X = 1, Y = 1) = 1/12; and remaining probabilities are equal to zero. Find the Marginal Probability distributions of X, Y and also calculate the Means of X and Y. 30
- (c) Define Central Limit Theorem, state its importance. 10SECTION–II
- 5. (a) Define consistent, unbiased and sufficient estimators with suitable examples. 15
  - (b) Show that Consistent Estimators need not be unbiased. 15
  - (c) State and prove Rao Blackwell Theorem. 15
  - (d) Find the sufficient estimator of 'p' when an independent random sample of size 'k' is drawn from a binomial population with parameters 'n' and 'p' using Neymann Factorization Theorem.
    - 15
- 6. (a) State the properties of method of Moments. 10
  - (b) What are confidence intervals ? How do you estimate them for the mean and variance of Normal distribution ? 20
  - (c) Use the Method of Maximum Likelihood estimation for estimating the parameters ' $\mu$ ' and ' $\sigma^2$ ' when an independent random sample of size n is drawn from two Normal populations N( $\mu$ , 1) and N(0,  $\sigma^2$ ). 30
- (a) Write brief notes on Type-I error, Type-II errors, Most powerful Critical Region and Uniformly Most Powerful Critical Region.
   20
  - (b) Find the probabilities of Type-I and Type-II errors for a critical region W = {x<sub>1</sub>, x<sub>2</sub> : x<sub>1</sub> + x<sub>2</sub> ≥ 9.5}under H0 :  $\theta$  = 2 against H1 :  $\theta$  = 1 when the parent population of the sample with size 2 is drawn from a population with pdf f(x) = (1/ $\theta$ )e<sup>-x/ $\theta$ </sup>,  $\theta$  > 0; f(x) = 0 otherwise. ( $\chi_4^2$  = 9.488) 20
  - (c) Find the Best Critical Region for Mean when an independent random sample of size 'n' is drawn from a Poisson Population under  $H_0: \theta = \theta_0$  against  $H_1: \theta = \theta_1$ . 20

3

15

HRI-28386

Contd.