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Statistics–I
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INSTRUCTIONS

(i) Answers must be written in English.

(ii) The number of marks carried by each question is indicated at

the end of the question.

(iii) The answer to each question or part thereof should begin on a

fresh page.

(iv) Your answers should be precise and coherent.

(v) The part/parts of the same question must be answered together

and should not be interposed between answers to other

questions.

(vi) Candidates should attempt any five questions choosing at most

two from each section.

(vii) If you encounter any typographical error, please read it as it

appears in the text book.

(viii) Candidates are in their own interest advised to go through the

General Instructions on the back side of the title page of the

Answer Script for strict adherence.

(ix) No continuation sheets shall be provided to any candidate under

any circumstances.

(x) Candidates shall put a cross (X) on blank pages of Answer
Script.

(xi) No blank page be left in between answer to various questions.
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8. (a) Write Procedure of Kolmogorov–Smirinov Non Parametric Test.
20

(b) Write the procedure for Mann-Whitney U–test and what is its
equivalent parametric test ? 20

(c) Describe the Nature of Nonparametric tests and give a brief
information on their merits and limitations. 20

SECTION–III

9. (a) Define Malanobis D2 statistic and write about the applications
of this distribution. 15

(b) What are the merits and limitations of Hotling's T2 Statistic in
Multivariate data analysis ? 15

(c) Give a brief note on the importance of Discriminant Analysis.
10

(d) Give the method of fitting a polynomial regression of order k
by the method of least squares. 20

10. (a) Find coefficients of Partial Correlation r
12.3 

and r
13.2

 when the
simple correlations are r

12 
= 0.57, r

13
 = 0.82, r

23 
= 0.63. 20

(b) Prove that for a tri-variate population 1-R2
1.23 

= (1 – r2
12

)
(1 – r2

13.2
). 20

(c) Find R
1.23

, b
12.3 

for r
12 

= 0.7, r
13

= 0.35, r
23 

=0.65, 'σ1= 2, σ2= 3,
σ3= 1. 20

11. (a) State the Mathematical Model and its assumptions for analysis
of variance in one way classification of data. 20

(b) Describe the Gauss = Markoff setup behind the ANOVA for
2 way classification of data. 20

(c) Compare the concepts of Simple Correlation and Simple
Regression. 20

12. (a) Define Bivariate Normal Population and state its properties.
20

(b) Explain the procedure for testing the significance of regression
coefficients in a linear regression. 20

(c) Give the advantages and disadvantages in fitting of Orthogonal
Polynomials. 20
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SECTION–I
1. (a) The odds in favour of winning a game by player A are

2 to 3 and the odds against winning the game by player B are
3 to 4. If  both players are making their efforts independently
find the probabilities of  :

(A) Both will win the game

(B) None will win the game

(C) Only one will win the game

(D) At least one will the game. 20

(b) Name the methods of estimation and explain the method of
least squares to estimate the parameters of a polynomial of
2nd degree. 10

(c) Explain the terms Statistical Hypothesis and Sample Space.
10

(d) Distinguish the difference between one way and two way
classified data. 20

2. (a) Let the p.d.f. of a random variable X is f(x) = k (x2 – 2x +3),
0 ≤ X ≤ 2; f(x) = k (1 – 2x), 2 ≤ X ≤ 3; f(x) = K(x – 2),
3 ≤ X ≤ 4; f(x) = 0, otherwise; Let the event A = 1/2 ≤ X ≤ 5/2,
B = 1 ≤ X ≤ 4; then find P(A/B) and P(B/A) while finding k value.

30

(b) State and prove Cauchy–Schwartz Inequality. 15

(c) State and prove Baye's Theorem. 15

3. (a) Show that the Pearson's coefficient beta-2 is greater than or
equal to 1. 10

(b) Define Karl Pearson's Coefficient of Correlation and show that
it is invariant of change of origin and scale. 20

(c) Find the correlation coefficient between X, Y when their joint
probability density function is f(X, Y) = ax2 (y + 1); for 0 ≤ X
≤ 2; 1 ≤ Y ≤ 3; f(x, y) = 0, Otherwise. 30

4. (a) Write a Joint Probability distribution for the outcomes of X, Y;
where X is the number of heads when two fair coins are tossed
simultaneously, and Y is the outcome on a throw of a fair die.

20

(b) Given the probabilities, P(X = 1, Y = –1) = 1/6; P(X = 0,
Y= –1) = 1/12; P(X = – 1, Y = –1) = 1/12; P(X = 1, Y= 0)=3/12;
P(X = –1, Y = 0) = 1/12; P(X = 0, Y = 0) = 1/6; P(X = 1,
Y = 1) = 1/12; and remaining probabilities are equal to zero.
Find the Marginal Probability distributions of X, Y and also
calculate the Means of X and Y. 30

(c) Define Central Limit Theorem, state its importance. 10

SECTION–II
5. (a) Define consistent, unbiased and sufficient estimators with suitable

examples. 15

(b) Show that Consistent Estimators need not be unbiased. 15

(c) State and prove Rao Blackwell Theorem. 15

(d) Find the sufficient estimator of 'p' when an independent random
sample of size 'k' is drawn from a binomial population with
parameters 'n' and 'p' using Neymann Factorization Theorem.

15

6. (a) State the properties of method of Moments. 10

(b) What are confidence intervals ? How do you estimate them for
the mean and variance of Normal distribution ? 20

(c) Use the Method of Maximum Likelihood estimation for estimating
the parameters 'µ' and 'σ2' when an independent random sample
of size n is drawn from two Normal populations N(µ, 1) and
N(0, σ2). 30

7. (a) Write brief notes on Type-I error, Type-II errors, Most powerful
Critical Region and Uniformly Most Powerful Critical Region.

20

(b) Find the probabilities of Type-I and Type-II errors for a critical
region W = {x

1
, x

2
 : x

1
 + x

2
 ≥ 9.5}under H0 : θ = 2 against

H1 : θ = 1 when the parent population of the sample with size
2 is drawn from a population with pdf f(x) = (1/θ)e– x/θ, θ > 0;
f(x) = 0 otherwise. (χ4

2 = 9.488) 20

(c) Find the Best Critical Region for Mean when an independent
random sample of size 'n' is drawn from a Poisson Population
under H

0 
: θ = θ0 against H

1
 : θ = θ1. 20


