- (d) Draw the phasor diagram of transformer for lagging p.f., unityp.f. and leading power factor loads. Discuss the losses in a transformer.
- 6. (a) Draw the fixed bias circuit and derive an expression for stability factor.
 - (b) A common emiter amlplifier with voltage divider bias circuit is designed to establish the quiescent point at $V_{CE}=12V$, $III_{C}=2mA$, stability factor ≤ 5.1 . If $V_{cc}=24$ V, $V_{BE}=0.7$ V, $\beta=50$, $R_{c}=4.72$ Ω determine R_{E} ,
 - (c) Describe with necessary derivations, the effect of negative feed back on the bandwidth and distortion in an amplifier. 20
- 7. (a) Draw the circuit diagram of Colpitt's oscillator. Derive the condition to maintain the oscillations.
 - (b) Design the following counters using 7492 as divide by 12 counter:
 - (i) Mod 7 counter

 R_1 and R_2 .

- (ii) Mod 11 counter 20
- (c) Derive emf equation of dc generator. State the assumption for derivation. Discuss critical field resistance.
- (a) Explain the concept of rotating magnetic field produced when 3 phase balanced currents are fed to 3 phase balanced distributed winding.
 - (b) Explain how Sumpner's test is conducted for transformers.

 What is the significance of this test?

 20
 - (c) A -3-phase, 8-pole, 750 rpm synchronous generator has 72 slots. Each slot has 12 conductors and winding is short pitched by 2-slots. If the flax/pole is 0.06 wb, find induced emf/phase.

20

20

Roll No.

Total No. of Pages: 4

Time: Three Hours] [Maximum Marks: 300

INSTRUCTIONS

- (i) Answers must be written in English.
- (ii) The number of marks carried by each question is indicated at the end of the question.
- (iii) The answer to each question or part thereof should begin on a fresh page.
- (iv) Your answer should be precise and coherent.
- (v) The part/parts of the same question must be answered together and should not be interposed between answers to other questions.
- (vi) Candidates should attempt question nos. 1 and 5 which are compulsory and any three more out of the remaining questions selecting at least one from each Section.
- (vii) If you encounter any typographical error, please read it as it appears in the text-book.
- (viii) Candidates are in their own interest advised to go through the General Instructions on the back side of the title page of the Answer Script for strict adherence.
- (ix) No continuation sheets shall be provided to any candidate under any circumstances.
- (x) Candidates shall put a cross (x) on blank pages of Answer Script.

- (xi) No blank page be left in between answer to various questions.
- (xii) No programmable Calculator is allowed.
- (xiii) No stencil (with different markings) is allowed.

SECTION-A

- 1. Answer any **three** of the following:
 - (a) Determine $V_0(t)$ in the following circuit: 20

- (b) Given the potential $V=\frac{10}{r^2}\sin\theta\cos\theta$. Find electric flux density D at $\left(2,\frac{\pi}{2},0\right)$. Also calculate the work done on moving a 10- μ C charge from point A (1, 30°, 120°) to B (4, 90°, 60°).
- (c) Explain two wattmeter method of measurement of 3 phase power.
- (d) Derive emf equation of dc generator from first principles.
- 2. (a) Planes z=0, z=4 carry current $I=-10\overline{a_x}$ and $I=10\overline{a_x}$ A/m respectively. Determine A/m $_H$ at $(1,\ 1,\ 1)$
 - (b) Explain the working of a moving Iron Instrument. Derive the expression for deflecting torque.
 - (c) Draw the small signal model of Bipolar Junction transistor. Write down describing equation relating the parameters.20

- 3. (a) A parallel plate capacitor with plate area 5 cm² and plate separation 3 mm has a voltage 50 sin (10³t) volts is applied assuming $\epsilon = 2\epsilon_0$.
 - (b) The electric field free space is given by

$$\overline{E} = 50 \cos \left(10^8 t + \beta x\right) a_v V/m.$$

Find direction of wave propagation. Calculate β and time it takes to travel a distance of $+\lambda/2$.

(c) A uniform plane wave in air with

$$\overline{E} = 8 \cos (wt - 4x - 3z) \overline{a}_{v} V/m.$$

is incident on a dielectric slab ($z \ge 0$) with $\mu_r = 1.0$, $\epsilon_r = 2.5$, $\sigma = 0$. Find polarization of the wave, and the angle of incidence.

20

4. (a) An unbalanced Y-load has balanced set of voltages 100V and 'acb' sequence. Calculate line currents and neutral current.

$$Z_A = 15\Omega$$
 $Z_B = (10+j^5)\Omega$
 $Z_C = (6-j^8)\Omega$ 20

- (b) State superposition theorem. Explain how is it verified in alternating current circuits with the help of an example.
- (c) Explain the principle of operation of electrodynamometer-type wattmeter with the help of a diagram.

SECTION-B

- 5. Answer any **three**:
 - (a) Derive an expression for ripple factor in full wave rectifier with resistive load.
 - (b) A transistor has $I_E = 10$ mA and $\alpha = 0.98$. Determine I_c and I_B . Derive the equation used.
 - (c) Sketch the speed-torque characteristics of different types of dc motors. Explain the variation of torque with load current.

20

EPQ-54268 3 Contd.

EPQ-54268 2 Contd.