(d) Draw the phasor diagram of transformer for lagging p.f., unity p.f. and leading power factor loads. Discuss the losses in a transformer.
6. (a) Draw the fixed bias circuit and derive an expression for stability factor.
(b) A common emiter amlplifier with voltage divider bias circuit is designed to establish the quiescent point at $\mathrm{V}_{\mathrm{CE}}=12 \mathrm{~V}$, $\mathrm{III}_{\mathrm{C}}=2 \mathrm{~mA}$, stability factor ≤ 5.1.
If $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \beta=50, \mathrm{R}_{\mathrm{c}}=4.72 \Omega$ determine R_{E}, R_{1} and R_{2}.

20
(c) Describe with necessary derivations, the effect of negative feed back on the bandwidth and distortion in an amplifier. 20
7. (a) Draw the circuit diagram of Colpitt's oscillator. Derive the condition to maintain the oscillations.

20
(b) Design the following counters using 7492 as divide by 12 counter :
(i) Mod 7 counter
(ii) Mod 11 counter

20
(c) Derive emf equation of dc generator. State the assumption for derivation. Discuss critical field resistance.
8. (a) Explain the concept of rotating magnetic field produced when 3 phase balanced currents are fed to 3 phase balanced distributed winding.
(b) Explain how Sumpner's test is conducted for transformers. What is the significance of this test ?
(c) A -3-phase, 8 -pole, 750 rpm synchronous generator has 72 slots. Each slot has 12 conductors and winding is short pitched by 2-slots. If the flax/pole is 0.06 wb , find induced emf/phase.
(xi) No blank page be left in between answer to various questions.
(xii) No programmable Calculator is allowed.
(xiii) No stencil (with different markings) is allowed.

SECTION-A

1. Answer any three of the following :
(a) Determine $V_{0}(\mathrm{t})$ in the following circuit:

(b) Given the potential $\mathrm{V}=\frac{10}{\mathrm{r}^{2}} \sin \theta \cos \theta$. Find electric flux density D at $\left(2, \frac{\pi}{2}, 0\right)$. Also calculate the work done on moving a $10-\mu \mathrm{C}$ charge from point $\mathrm{A}\left(1,30^{\circ}, 120^{\circ}\right)$ to $\mathrm{B}\left(4,90^{\circ}, 60^{\circ}\right)$.
(c) Explain two wattmeter method of measurement of 3 phase power.

20
(d) Derive emf equation of dc generator from first principles.

20
2. (a) Planes $z=0, \quad z=4$ carry current $I=-10 \bar{a}_{x}$ and $\mathrm{I}=10 \overline{\mathrm{a}}_{\mathrm{x}} \mathrm{A} / \mathrm{m}$ respectively. Determine $\mathrm{A} / \mathrm{m}_{\mathrm{H}}$ at $(1,1,1)$
(b) Explain the working of a moving Iron Instrument. Derive the expression for deflecting torque.
(c) Draw the small signal model of Bipolar Junction transistor. Write down describing equation relating the parameters.

