Roll	No.	

1(CCE-M)6 MATHEMATICS-I

[15]

Time Allowed -3 Hours

Maximum Marks-300

INSTRUCTIONS

- i) Answers must be written in English.
- ii) The number of marks carried by each question is indicated at the end of the question.
- iii) The answer to each question or part there of should begin on a fresh page.
- iv) Your answer should be precise and coherent.
- v) The part/parts of the same question must be answered together and should not be interposed between answers to other questions.
- vi) Candidates should attempt any Five questions.
- vii) If you encounter any typographical error, please read it as it appears in the text book.
- viii) Candidates are in their own interest are advised to go through the General Instructions on the back side of the title page of the Answer Script for strict adherence.
- ix) No Continuation sheets shall be provided to any candidate under any circumstances.
- x) Candidates shall put a cross (X) on blank pages of Answer Script.
- xi) No blank page be left in between answer to various questions.
- xii) No programmable Calculator is allowed.
- xiii) No stencil (with different markings) is allowed.
- xiv) In no circumstances help of scribe will be allowed.

MATHEMATICS-I (12 Questions)

All questions carry same marks (60 each) and each part of every question carry the same weightage

- 1. Let U and W be subspaces of a vector space V. We define the sum U+W as follows: $U+W=\{u+w:u\in U,w\in W\}$.
 - a) Show that U+W is a subspace of V containing both U and W.
 - b) Show that span $\{u_1, u_2, ...u_r, w_1, w_2, ...w_s\} = \text{span } \{u_1, u_2, ..., u_r\} + \text{span } \{w_1, w_2, ..., w_s\} \text{ for any vectors } u_i\text{'s and } w_j\text{'s t from U and W respectively.}$

- c) If U and W are finite dimensional and if $U \cap W = \{0\}$, then show that $\dim(U+W) = \dim(U) + \dim(W)$.
- **2.** Let $T:V \to V$ be a linear transformation of a finite dimensional vector space V.
 - a) Prove that if $U \subset V$ is a vector subspace, then $T(U) = \{T(u) : u \in U\}$ is a vector subspace of V.
 - b) Prove that if T is onto, it sends linearly independent set of vectors to linearly independent set of vectors.
 - c) Prove that if T is invertible and $U \subseteq V$ then dim $T(U) = \dim U$.
- 3. Let A and B be m×n matrices.
 - a) Show that rank $(A+B) \le rank (A) + rank (B)$
 - b) Show that $\operatorname{null}(A) = \operatorname{null}(UA)$ for any invertible m×m matrix U.
 - c) Show that dim (null (A) = dim (null (AV)) for any invertible $n \times n$ matrix V.
- 4. A complex matrix S is called skew-Hermitian, if $S^* = -S$
 - a) Show that $Z Z^*$ is skew-Hermitian for any square complex matrix Z.
 - b) If S is skew-Hermitian, then show that S² and iS are Hermitian.
 - c) If S is skew-Hermitian, then show that the eigenvalues of S are purely imaginary $(i \lambda \text{ for } real \lambda)$.
- 5. Find the equation (s) of the tangent (s).
 - a) to the parabola $y^2 = 2ax$ at the vertex and at the ends of Latus rectum.
 - b) to the hyperbola $x^2-2y^2=1$ from the point (7,5).
 - c) to the ellipse $\frac{x^2}{32} + \frac{y^2}{18} = 1$ at the point whose x coordinate is 2.
- **6.** Prove the following:
 - a) Let $A \subset \mathbb{R}$. We say that a function $\int :A \to \mathbb{R}$ is Lipschilz on A if there exists L > 0 such that $|f(x) f(y)| \le L|x y|$ for all $x, y \in A$. Show that any Lipschitz function is continuous.

such that
$$|f(x)| > \frac{|f(c)|}{2}$$
 for all $x \in (c - \delta, c + \delta) \cap A$.

- c) Let $f:[0,2\pi] \to [0,2\pi]$ be continuous such that $f(0) = f(2\pi)$. Show that there exists $x \in [0,2\pi]$ such that $f(x) = f(x+\pi)$.
- 7. a) Use Lagrange multipliers to find the maxima and minima of the function $f(x,y)=x^2+2y^2$ subject to the constraint $x^2+y^2=1$
 - b) Find all the stationery points and local maxima and minima of the function $f(x,y)=e^{x+y}\left(x^2+y^2-xy\right).$

8. Let
$$F(y) = \int_0^\infty \frac{\sin xy}{x(x^2+1)} dx$$
 if $y > 0$

- a) show that F satisfies the differential equation $F''(y) F(y) + \pi / 2 = 0$
- b) Deduce that $F(y) = \frac{1}{2}\pi(1 e^{-y})$
- c) Deduce that for y>0 and a>0 $\int_0^\infty \frac{\cos xy}{x^2+a^2} dx = \frac{\pi e^{-ay}}{2a}$
- 9. a) Solve the differential equation $y\cos x + 2xe^y + (\sin x + x^2 e^y 1)y' = 0$
 - b) A radioactive substance obeys the equation y'=ky where k<0 and y is the mass of the substance at time t. Suppose that initially, the mass of the substance is y(0) = M > 0. At what time does half of the mass remain?
 - c) The half life of carbon-14 is 5730 years. If one starts with 100 milligrams of carbon-14; how much is left after 6000 years? how long do we have to wait before there is less than 2 milligrams?
- 10. Consider the initial value problem $y' + \frac{y}{4} = 3 + 2\cos 2t$, $y(0) = y_0$
 - a) Find the solution to the homogenous equation of this problem.
 - b) Find the solution of this initial value problem and describe its behaviour for large t.

- c) Determine the value of t for which the solution first intersects the line y=12.
- 11. Let u and v be vector fields, ϕ is a scalar function and T is a tensor field. Show that
 - a) $curl(grad v)^T = grad(curl v)$
 - b) $curl \ curl \ v = grad \ (div \ v) grad^2 \ v$
 - c) $curl(\phi v) = \phi curl v + (\nabla \phi) \times v$
 - d) $div(u \otimes v) = (div v)u + (grad u)v$.
- 12. a) The tallest spot on Earth is Mt. Everest, which is 8857 m above sea level. If the radius of the Earth to sea level is 6369 km, how much does the magnitude of g change between sea level and the top of Mt. Everest?
 - b) The value of g at the surface of the earth is 9.78 N/kg, and on the surface of Venus the magnitude of g is 8.6 N/kg. An astronaut has a mass of 70 kg on the surface of the earth. What will her weight be on the surface of Venus?
 - c) A person in a kayak starts paddling, and it accelerates from 0 to 0.9 miles/hour in a distance of 0.9 km. If the combined mass of the person and the kayak is 80 kg, what is the magnitude of the net force acting on the kayak?