This question paper contains 4 printed pages]

Code No.: 18(II) Roll No.

0 (CCEM) 9

PHYSICS

Paper: II

Time Allowed: 3 hours]

[Maximum Marks: 300

Note: (i) Answers must be written in English.

- (ii) Number of marks carried by each question are indicated at the end of the question.
- (iii) Part/Parts of the same question must be answered together and should not be interposed between answers to other questions.
- (iv) The answer to each question or part thereof should begin on a fresh page.
- (v) Your answers should be precise and coherent.
- (vi) Answer all questions. All questions carry equal marks.

P. T. O.

- 1. (a) Charge is distributed uniformly along an infinitely long straight line. If λ is the linear charge density obtain expression for the electric field \vec{E} at a point P distant r from the line. Do not use Gauss's law.
 - (b) State and explain Gauss's law and obtain the result in (a) using Gauss's law.
 - (c) Plates of a parallel plate capacitor have surface charge densities of +σ and -σ for ∈ = ∈.
 Obtain the expression for the pressure on the plates.

OR

- (a) A parallel plate capacitor C, a resistor R, an ideal cell ∈, an ideal ammeter A and a switch S are arranged in series. What is the current shown by A as soon as S is closed? Why?
- (b) An L C- R series circuit is subjected to an AC source, V_{rms} volts and variable angular frequency
 ω Hz. Obtain the expressions for resonance and quality factor.
- (c) Draw circuit diagram of a parallel resonant circuit.
- 2. State and express Maxwell's equations. How does their application, explain the transverse nature of electromagnetic waves? Obtain an expression for Poynting vector.

OR

- (a) State and explain Biot-Savart Law and use it to obtain expression for magnetic field due to a single loop on its axis.
- (b) Define Self and Mutual inductances. 10
- (c) State and explain Kirchoff's Laws used in circuit analysis.
- 3. What are the basic postulates of Bohr's theory of hydrogen atom? Obtain the expression for the energy of a state. How does the Bohr theory explain the hydrogen atom spectrum? Calculate the energy required to ionise the hydrogen atom.

OR

Describe the Stern - Gerlach (SG) experiment and discuss its importance in Quantum Mechanics.

How many lines are expected to be observed if the unpaired electron in an atom is in l=3 state in the SG experiment? Explain and discuss the l=2 to l=1 transition and the number of spectral lines observed due to normal Zeeman effect.

 Derive the Heisenberg's Uncertainty principle and apply it to obtain zero point energy for a particle in a linear Harmonic Oscillator potential.

OR

Solve the Schrodinger wave equation to obtain energy eigen value and eigen function for a particle of a one

dimensional box. Discuss the parity of eigen functions and plot the density distribution for first two eigen functions.

- 5. (a) Discuss the classification of elementary particles and the conservation laws obeyed in strong and weak interactions. Name two Bosons and two Fermions.
 - (b) Obtain expressions for half-life and average-life of a radioactive substance. How are the two related?
- **6.** (a) Explain the physics of intrinsic and extrinsic semiconductors. How does E_F , the Fermi level, change with rise in temperature in both intrinsic and extrinsic semiconductors?
 - (b) How are diodes used in detection of modulated AM signals? 20